ミストコレクタにおいても重要視される機能が時代とともに変化し「省エネ」「長寿命」「高性能」が求められているなか,フィルタを用いないいわゆるフィルタレスタイプのミストコレクタが期待されています。フィルタレスタイプのミストコレクタには色々な方式があり,それぞれに特性があります。ホーコスが開発したサイクロン式のミストコレクタの特徴と性能,使用事例などを解説します。
1. はじめに
昨今の企業を取り巻く厳しい経済状況や電力需給のひっ迫などを受け,日本全体で節電・省エネのもの造りへ大きな転換が必要とされている。
ミストコレクタにおいても重要視される機能が時代とともに変化してきた。キーワードは「省エネ」「長寿命」「高性能」。ユーザから期待されているのは,フィルタを用いないいわゆる「フィルタレスタイプ」のミストコレクタにおける前記キーワードの達成である。
弊社においてもこのテーマに取り組み,新しい形のミストコレクタを開発するに至った。核になったのは最近では家庭用の掃除機にも使われるようになってきたサイクロン技術。弊社の環境機器部門においては長年にわたって集塵機を設計,製造,販売しており,その集塵機としてサイクロンを使用することがあり,馴染み深い技術であった。
ここでは,サイクロン技術の概要とそれを用いたミストコレクタの特徴について述べる。
2. ミストコレクタの種類と特徴
ミストコレクタは大きく“フィルタ式”“静電式”“慣性式”の3つのタイプに分類される。それぞれを先のキーワード「省エネ」「長寿命」「高性能」について見てみると,一般的には下記(表1)となる。
表1
○:達成 △:条件付き ×:未達成 |
まず,フィルタ式はフィルタによるろ過にてミストを捕集するため通気抵抗が大きく,またフィルタが目詰まりを起しやすい。しかし,目詰まりを考慮しなければ,より高性能なフィルタを用いることで比較的容易に捕集効率を高めることができる。
次に,静電式は放電によりミストを帯電させ,帯電したミストを同電荷が反発し合う力(斥力)を利用して集塵板に捕集するため,通気部の抵抗が小さいため送風機の動力が少ない。しかし,固形物,ミストのゲル化などにより放電極,集塵極に汚れが堆積すると安全回路により停止するので,使用条件によっては頻繁なメンテナンスを必要とすることがある。
最後に,慣性式はフィルタレスのミストコレクタにあたるもので,現在様々な方式が市場に出回っているが,表1においては2種類に分類した。
<慣性式A>
「省エネ⇒多風量」を重視したタイプ。例として,固定された捕集機構(メカニカルフィルタ等)の中で気流を屈曲または旋回流として,空気とミスト慣性力の差を利用して分離する構造。
<慣性式B>
「高捕集性能⇒緻密な構造」を重視したタイプ。例として,気流に対して相対的に運動する捕集機構を気流の中に配して,捕集機構とミストを衝突させ分離する構造。
動力と捕集性能の観点から,慣性式A,Bおよび目標とする位置を図1に記載した。
図1 |
ミストコレクタにおいて,以前からサイクロンは切粉等の比較的大きな粒子を除去する前処理装置として用いられており,その分類としては慣性式Aとなる。したがって,サイクロン技術においてはいかに捕集性能を向上させることができるかが鍵となる。
3. サイクロン式ミストコレクタの特徴
まず初めにサイクロンの機構についての説明を行う。サイクロンは内部に旋回流を発生させて遠心力によりミストを分離するが,その内部構造はいたって単純である。サイクロンの外形を図2-1に示す。
気流の導入口が旋回筒部に対して接線方向に接続されており,導入された気流が旋回筒部の壁に沿って旋回流となり,その旋回流が流下し,絞り部にて反転し,出口管へと抜けていく。気流が旋回するうちにミストは遠心力を受けて旋回筒部の管壁に押しやられて付着し捕集される。捕集されたミストはドレンとしてドレン口から排出される。気流の模式図を図2-2に示す。
図2-1 |
図2-1 |
続いて,慣性式における捕集効率向上の方法について見てみる。先に述べた慣性式A(特にメカニカルフィルタ)において捕集効率を向上のためには,流速が一定の条件の元では,捕集機構をより緻密な構造とするより他に仕方がない。しかし,緻密な構造は目詰まりの原因になり,また通気抵抗が大きくなる。すなわち,慣性式Bの位置へとシフトすることになるので,目標の位置へは到達できない。
一方でサイクロンにおいて捕集効率向上のためには旋回筒部の直径Dをより小径(D’)とすれば良いことはすでに実験,理論にて証明されているところである。その時,直径D以外の他の寸法もD’/D倍する相似設計とする。サイクロンの通気抵抗はその寸法比によって決まるため,例えばD=100mmのサイクロンとD’=20mmのサイクロンが相似形であれば,通気抵抗はほぼ等しくなる。したがって,動力を維持したまま捕集効率を向上させることができ,旋回筒部の径を小さくすることによりサイクロン方式は目標の位置へ到達できる。
ところが,処理風量については考慮しなければならない。D=100mmのサイクロンの処理風量をQとすると,D’=20mmのサイクロン処理風量Q’は,Q’=Q×(20/100)2=0.04Qとなり,同じ風量を処理するためには実に25倍の数のサイクロンが必要となる。このような小径サイクロンにより捕集効率を上げつつ,処理風量を確保するために複数のサイクロンを並列に配置し使用する方法はマルチサイクロン方式と呼ばれる。
○高性能
この度弊社が開発した新型機「ミストイーターZ」にはこのマルチサイクロン方式を採用している(図3)。
図3 |
従来のマルチサイクロン方式においては,1つの大きな問題があった。それは,小径にすることで単体では高性能としたサイクロンも,その本数が多くなると捕集効率が低下してしまうことである。理由は,複数あるサイクロン間にて,取り付け位置や気流の乱れ,個体差などから圧力の差が生じ,1つのサイクロンにて捕集されたミストが他のサイクロンのドレン口から逆流する気流に乗って出口管から放出される,いわゆる,再飛散が起こるからである。しかし,ミストイーターZにおいては独自の差圧制御方法によりこの問題を解消しており,シリーズ機では最大110個のサイクロンを並列運転するが再飛散を起こすことなく,高捕集効率を維持している。(特許出願中)
○省エネ
従来機では前処理にサイクロン,後段にメカニカルフィルタを配置して多段に捕集していたが,新型機では捕集機構をマルチサイクロン(Zサイクロンユニット)に集約し,メカニカルフィルタを排除(表2)。通気抵抗を減少させ,電力消費量を最大50%カットすることができた。
表2
|
○長寿命
サイクロンの特徴として,メカニカルフィルタ等に比べて内部の流路が圧倒的に広いことが挙げられる。これは目詰まりし難く,長期間安定的して風量低下を起しにくいことを意味している。また分解洗浄などのメンテナンスが必要になった際にも作業を容易に行えるなどそのメリットは大きい。
さらにZサイクロンユニットは材料として耐摩耗性に優れるエンジニアリングプラスチックを採用し,サイクロン自体の長寿命化にも配慮している。
4. 使用事例や適応
弊社従来機は,捕集性能の観点から適応対象を水溶性クーラントによる加工に限定していたが,新型機ミストイーターZは油煙が発生しない加工に限ってであるが,油性クーラントによる加工へも適応対象を広げることができた。これにより,フィルタレスミストコレクタの更なる普及を見込んでいる。
ミストイーターZは消耗品がほとんどなく,メンテナンス頻度も少ないので,アフターケアの負荷が低く,海外での使用事例も増えて来ている。加えて,モータ容量が0.4kW以下の場合,海外のモータ高効率規制に該当しないことが多いことも海外向けの事例が増す一因として挙げられる(新型機は0.4kWモータにて,従来機0.75kWモータと同等の風量を処理できる)。
また,従来機を使用されているユーザに対しても,省エネ,コストダウンのため,新型機への切り換えを推奨している。表3に電気代コストダウンの試算を示す。
表3
|
電気量単価や稼働時間,使用しているミストコレクタの電気容量によりコストダウンの額は異なるが,買い替えを行ったとしても2~3年で購入コストを償却することができる公算が高い。
5. 課題,展望
フィルタレスタイプのコレクタは未だ成長分野であり,今後も更なる性能向上などの発展が期待されている。ただ,現状においてはこれまで述べたようにフィルタレスタイプのミストコレクタには色々な方式があり,それぞれに特性があるため,ユーザが適応を判断するのが難しい。そもそもミストコレクタは処理風量,捕集効率の測定,表示方法に規定がなく,各社独自の測定および表記を行っている。機種選定のためにユーザが複数のミストコレクタを実際にテスト運転し評価している場合もあるが,今後は統一的な性能表記の枠組みが必要になってくると考えている。特に海外案件に対してはテスト運転することは難しい場合が多いので,日本の企業が海外への展開を図る上でも必要ではなかろうか。ただし,性能(捕集効率,処理風量)が伴なわない製品は市場にて淘汰されることになる。
最近ではサイクロンという言葉が一般に知られ,フィルタを用いない捕集機構として認知され始めているが,その捕集性能がまちまちであることはあまり知られていない。弊社としては,これからもサイクロン式をはじめとするフィルタレスミストコレクタの更なる性能向上に取り組み,より環境に配慮した製品を世に送り出し,快適な作業環境の構築に貢献したいと考えている。